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Onset of convection in a rapidly rotating fluid sphere 

By F. E. BISSHOPP AND P. P. NIILER 
Brown University, Providence, Rhode Island 

(Received 16 April 1965) 

The constraint imposed by rapid rotation stabilizes convective motions in a plane 
liquid layer, so that the critical Rayleigh number which marks their onset 
increases as the two-thirds power of the Taylor number. Here we formulate an 
asymptotic approximation to the equations governing an analogous problem in 
a sphere. The solutions we obtain for the asymptotic equations predict the same 
power law for the dependence of the corresponding critical Rayleigh number on 
the Taylor number. The analysis is limited at the outset to the case of axially 
symmetric motions, and the present result, taken in conjunction with earlier 
results for slow rotation, essentially completes the treatment of symmetric, 
convective modes of instability. 

Introduction 
In  this paper we are interested in solving a thermal instability problem in 

a rotating sphere with potentially unstable temperature gradient. Our interest 
will be centred on the case of large Taylor number (T > 10l2), for which the 
combination of Galerkin’s method and expansion techniques fails to provide 
a reliable solution to the problem (see e.g. Bisshopp 1958). This is the case of 
interest in geophysical and astrophysical situations, where the Taylor number is 
often very large indeed (e.g. - lo2’ in the Earth’s core), but our result is limited 
by the assumptions of axial symmetry and the principle of the exchange of 
stabilities. Since explicit use of the largeness of the Taylor number (and the 
critical Rayleigh number) will be made throughout the analysis, this can be 
called an asymptotic treatment of the thermal instability problem. 

In an earlier paper (Niiler & Bisshopp 1965) we have discussed the onset of 
convection in a rotating layer of fluid, heated from below and subject to a uniform 
gravitational field. There an exact solution of the stability problem can be found, 
and its asymptotic expansion computed. It is found that the incipient motion 
in the rotating layer is characterized by two distinct types of behaviour. In  the 
region of fluid removed from rigid boundaries the gradients of the components of 
perturbations of the steady conductive solution are all constrained to be per- 
pendicular to the axis of rotation in the limit where T + m. Near the boundaries 
of the system there is a viscous boundary layer whose thickness approaches zero 
in the same limit and within which the direction of the gradients changes from 
one normal to the axis of rotation to normal to the boundary. The dominant 
terms in the equations of motion in such layers are those derived from Coriolis 
forces and from viscous stresses, and we shall follow current practice in calling 
them Ekman layers. 
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Here we propose to develop a solution of the thermal instability problem for 
a self-gravitating, rotating liquid with a uniformly distributed heat source 
within. A tractable problem results if we treat density variation due to change 
in temperature by the Boussinesq approximation, where the variation of density 
is taken into account only in so far as i t  provides buoyancy in the presence of 
gravity and where density and temperature changes are proportional. No effort 
has been made to develop an asymptotic expansion of the solution, i.e. to prove 
that the solution is indeed asymptotic to an exact solution. Instead, we have 
developed an asymptotic approximation, and we shall have to be satisfied with 
knowing the order of magnitude of the error which arises at each step of the 
analysis. 

2. Equations of the problem 
For the present purpose, we shall refer to Chandrasekhar's formulation ( 196 1, 

ch. 6) of the equations governing marginal stability of axially symmetric per- 
turbations of the temperature and velocity fields of a self-gravitating, rotating, 
fluid sphere with a uniformly distributed heat source. The perturbed velocity 
field is a superposition of a polodial and torodial component and can be repre- 
sented in terms of two azimuth-independent scalars U' and V'. In  terms of 
spherical co-ordinates (r', ,u' = cos 8, q5') we can write the perturbation velocity 
u' as 

The corresponding non-dimensional scalars, U ,  V (see e.g. Bisshopp 1958) satisfy 
the following equations in non-dimensional variables, r ,  p: 

where 8 is the perturbation temperature distribution; T and R are the Taylor and 
Rayleigh numbers, defined respectively as T = 4Q2RiIv2 and R = 2,8yR:/~v, R,, is 
the radius of the sphere, Ll is the angular velocity of the sphere, v is the kinematic 
viscosity, K is the coefficient of thermal conductivity, B is the rate a t  which the 
temperature would rise in the absence of conduction, ,8 = E / ~ K ,  y 3 4nGap/3, 
G is the gravitation constant, a is the coefficient of volume expansion and p is 
density. The five-dimensional Laplacian operator is 

and is the operator 
a 

In  the derivation of equations (2.2)-(2.4) it  has been assumed that the growth 
rate of a marginally stable disturbance is zero, rather than a pure imaginary 
number. TEis assumption is usually referred to as the assumption of the principle 
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of the exchange of stabilities or as a restriction of the treatment to convective 
modes of instability. It can be shown (Chandrasekhar 1961) for the plane layer 
confined between free boundaries that the convective modes of instability are 
unstable at a lower Rayleigh number than the alternate, overstable modes, 
provided the Prandtl number ( v / K )  is sufficiently large ( >  0.677). Clearly, we 
may expect a similar result in the problem at hand, but we shall not pursue the 
matter in this paper. 

The boundary conditions for a free boundary at r = 1 are that the normal 
component of velocity, the tangential components of viscous stress and the 
temperature perturbation vanish, i.e. that 

U = 0,  aZ(rU)/W = 0, aV/ar = 0, ae/a,u = 0. (2.7) 

u = 0, aujar = 0, v = 0, a6pp = 0. (2.8) 

For a rigid boundary they are that the velocity and temperature perturbation 
vanish, i.e. that 

In  this problem T can be considered as a number specified in advance, and 
then equations (2.2)-(2.4) together with boundary conditions (2.7) or (2.8) 
provide a characteristic-value problem for R. Because the differential equations 
are not separable for arbitrary values of T, it is highly unlikely that an exact 
solution to the full problem can be exhibited. In  a previous paper (Bisshopp 
1958), the problem has been solved approximately by constructing a set of 
functions which satisfy the boundary conditions and some of the differential 
equations exactly; a variational principle then provides that the remaining 
equations shall be satisfied in an approximate manner. This method gives a, 
characteristic equation of an infinite degree for the Rayleigh number in terms 
of an expression of infinite degree in the Taylor number. From this expression 
numerically converging values of the critical Rayleigh number can be calculated 
for T < lo8. The method of calculation is cumbersome for T - 106 and the 
accuracy is difficult to estimate, but nevertheless it is strongly suggested that R, 
is a monotonic function of T. We are interested in the case of large, but finite 
T (T > and want to compute the asymptotic limit of this function. Our 
solution taken together with the earlier calculations should provide the critical 
Rayleigh number for the entire range of Taylor number 0 < T < 00. 

In  an asymptotic analysis we shall adopt a somewhat different viewpoint from 
that which is employed when constructing an approximate solution by the 
variational methods. We begin by constructing an asymptotic set of differential 
equations, the solution of which will be the asymptotic eigenfunctions. To 
determine the asymptotic characteristic equation, these eigenfunctions are 
substituted into the boundary conditions, and these equations have to be 
satisfied to at least the same degree of approximation as the asymptotic differ- 
ential equations. Since it is difficult to prove that such a solution is indeed 
asymptotic to a solution of the full set of equations and boundary conditions, we 
claim only to be able to estimate the order of magnitude of the errors which are 
made at every step of the analysis. In  the present problem the analysis will 
receive its impetus from physical conditions which are expected to prevail in the 
interior of the sphere. 
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3. Asymptotic theory of thermal instability in a rotating sphere 
In  a previous paper (Niiler & Bisshopp 1966) on thermal instability of a liquid 

layer, heated from below, it was shown that increasing Taylor number forces the 
perturbed motion in the interior of fluid cells to have gradients along the axis of 
rotation which are of O(T-4) compared with those normal to the axis. It was 
also shown that large Taylor number radically reduces the effect of viscous stress 
introduced at the boundaries everywhere outside a vanishingly narrow layer 
close to the rigid walls, so that two distinct limits of the perturbation equations 
are necessary. One limit governs the motion in the interior of fluid cells, while 
the other prevails in the boundary layer. We shall now show that similar con- 
straints are imposed on the motion in the sphere, and again there are two limits 
to the perturbation equations. 

In  a sphere, the cylindrical co-ordinate normal to the axis of rotation is 

w = (1 -pZ)hr, (3.1) 

z = pr.  (3.2) 

and the co-ordinate in the direction of rotation is 

Since we expect considerably larger gradients of the perturbations in the direction 
normal to the axis of rotation in the interior of the sphere (when T -+ a), we shall 
introduce the transformation 

W* = Tm(w - o,,) (m 2 0), (3.3) 
and seek a solution of the resulting asymptotic equations which is a function of 
a* and z. It should be noted that we do not intend to take over the result m = Q 
directly from the analysis of the plane layer. We shall take over only the fact that 
a co-ordinate stretch is expedient, and equation (3.3) represents the general case 
when axial symmetry is retained. The exponent m is in fact to be determined (in 
virtue of the fact that we seek the minimum critical Rayleigh number) by the 
requirement that our asymptotic dependence of R, upon T shall be the lowest 
possible power of T consistent with equation (3.3). 

Now we have to investigate the possible transformations, of which there are 
relatively few, and find the one for which R, varies as the lowest power of T .  It 
goes almost without saying that R, which appears only in equation (2 .2) ,  must 
be present in some form in the limiting equation; otherwise the interior is 
described by the same equations as would be found in a treatment of the trivial 
problem of stability of uniform solid body rotation of a liquid. The instability 
must then originate in the boundary layer a t  the spherical surface, and the 
asymptotic limits imply that R, varies as T .  This is faster than the minimum rate 
of increase of R, which in fact occurs when all three terms of equation (2 .2 )  
contribute. 

If we take w,, = 0, for the sake of argument, then the pertinent operators in 
(2.2)-(2.4) have the asymptotic expansions in the co-ordinates w*,  z 

A, = ~ z m g ~ ~ + o ( i ) ,  az( i -p2)/ap = ~ 2 m z z ~ ~ . + o ( i ) ,  (3.4) 

where (3.5) 
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We can eliminate B from the perturbation equations, whereby the asymptotic 
form of (2.2)-(2.4) becomes, for z bounded away from the spherical boundary, 

T G ~ ~ : , U *  + Ta2u*/az2 = T ~ ~ R Z Z ~ ~ , U *  + 0 ( ~ 4 m ) ,  (3.6) 

gw. v* + au*/az = 0 ( ~ - 2 m ) ,  (3.7) 

where u N u*, v N V*T-2m. (3.8) 

In  the limit T J W ,  i t  follows easily from (3.6) that the slowest asymptotic 
increase of R is obtained when 

m = 8,  P = R/T* = O(1). (3.9) 

Equations (3.6) and (3.7) can then be reduced to the asymptotic form 

p:, + a y a Z 2 -  ~ 2 ~ q , , )  u* = o(T-+, (3.10) 

9a.v*+au*/a~ = o(T-)). (3.11) 

Before we continue and seek a limit of (2.2)-(2.4) which will be valid near the 
spherical boundary, we point out that the solution (3.10) is of the form 

u* = $(z)J,(aw*)/u*, (3.12) 

where Jl(aw*) is the bounded Bessel function of first order and fkst kind, a! is 
a constant and #(z)  is an even solution of 

((d2/dz2) + Pa2z2 - 09) $(z) = O(T-)). (3.13) 

Now it follows, if we retain a non-zero value for wo, that we obtain equations 
similar to (3.10) and (3.11) where gW; is replaced by a2/aw*2. The corresponding 
dependence on o* then is as sin (aw* + $), and since sine is of O( 1) for all values of 
its argument we have to consider what happens when w* takes on values which 
correspond to values of w near zero. In  fact the solution obtained for wo =# 0 
must be matched to a solution of the form of equation (3.12) in order to satisfy 
the correct equation near the axis. It follows finally that bounded solutions 
obtained for wo =+ 0 have relative amplitudes which vanish as T-f; hence we 
need not consider them. 

It also follows from (3.12) that the perturbations which feed the boundary 
layer where r -+ 1 will be proportional to 

U(1,p)  cc J,[a!T*(l -p2)*]/(1 -p2)*T*. (3.14) 

Hence, we see that the boundary layer will be fed only in a region where 
(1 -p2)* = O(T-*). From (3.1) to (3.3) it then follows that the proper limit of 
(2.2)-(2.4) at the spherical boundary is for z--t 1 with w* fixed. This is equivalent 
to the observation that the incipient motions in the interior of the sphere are all 
centred in a cylindrical region of O(T-)) around the axis of rotation and the 
boundary layer will be fed by motions only inside that region. In  such a small 
region of the spherical surface, the fluid will encounter an almost plane boundary. 

It should be pointed out here that Stewartson (1957) and Robinson (1959) 
found i t  necessary to consider other limits of the equations for small motions 
departing from rigid-body rotations. We have not had to consider these limits 
because our system is driven internally and the motions vanish at  the boundaries; 
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theirs, on the other hand, were driven a t  the boundaries. In  this problem the 
thermal driving term [which is proportional to R in (2.2)] has been shown to be 
of insignificant order throughout the sphere except at  the axis of rotation. Thus 
it turns out that we are able to construct a solution which satisfies the boundary 
conditions by taking only two limits of the equations. 

With the transformation (in the limit T -+ a) 

2 = (1-x)Tm, n > 0, (3.15) 

we imply that, for x" fixed, x+ 1. The equation for U* N U ,  under the trans- 
formation (3.3) and (3.15) obtained for n = $ with P and w* fixed, is 

(a6/ax"6 + ayax"2)  u* = o( T - B ) ,  (3.16) 

and for V* N Tt T' the equation is 

a2v*/ax"2- au*/ax" = o ( T - Q ) .  (3.17) 

The solutions for U ,  V which will be valid asymptotic approximations to 
(2.2)-(2.4) for the entire range of x ,  [0,1], are obtained by matching the bounded 
solutions of (3.10) and (3.11) to those of (3.16) and (3.17). The bounded solution 
of (3.10) has been obtained in (3.12) and (3.13), and the solution of (3.11) is 
calculated to be V*(z, w * )  = & ( x )  J,(aw*)/a2* + A @ ) .  (3.18) 

The solution of (3.16) can be written as the real part of 

o*(% w * )  = B(o*, T) +&w*, T) exp (-PIX") + c ( w * ,  T) exp ( -p2Z), (3.19) 

where PI, pZ are the square roots, 

A =  .Ji, p 2  = J-i, (3.20) 

that have positive real parts. The solution of (3.17) follows as the real part of 

P*(z, w*)  = a(,*, T) -B(w* ,  T) exp ( -,dl~)/p1 
- (%J*, T) exp (-P2x")/P2. (3.21) 

We determine the function B(w*, T) from the requirement that the boundary 
layer should be fed by the interior, i.e. 

(3.22) 

It then follows from (3.12), (3.13) and (3.19) that 

A(o*,  T) = J1(aw*) $(l)/w*. (3.23) 

The function D(w*, T) is similarly determined from the requirement 

lim [ P*(z, w * )  Tk - V*(x", w * )  T)] = O(T-ft), 
T-+m 

(3.24) 

which results, with the aid of (3.18) and (3.21), in 

B(w*, T) = [$'( 1) Jl (aw*) /a2~* + A (  I)] T-A, (3.25) 

The combination ofresults (3.19), (3.23), (3.21) and (3.25) yields the asymptotic 
eigenfunctions, which are uniformly valid approximations to (2.2)-(2.4) over the 
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entire range of z, or r ,  in the small cylinder of O(T-4) about the axis of rotation. 
These can be written as real parts of 

U(z ,  w * )  = #(z)  J,(aw*)/w* 

+[B(w*,T)exp( -/3,2)+fl(w*,T)exp( -p22)] [1+O(T-4)]+O(TP-4), (3.26) 

and 

V ( Z ,  w * )  = $'(z) J,(aw*)/a%*Tb+A(z) Ti 

- [B(w*,T)exp( -P12)/T$B,+b(w*,T)exp( -/32z")/T~/3,] 

x [l +O(T-&)]+O(T-1%). (3.27) 

The functions A @ ) ,  B ( w * ,  T), e ( w * ,  T) are determined from boundary conditions 
a t 2 =  0. 

4. The boundary conditions and characteristic equation 
To obtain the characteristic equation for either the free or rigid boundary, 

(2.7) or (2.8) must be satisfied at r = 1 for all values of p. It has been shown in 
the previous section that the asymptotic eigenfunctions which 'feed' the 
boundary layer, together with all their derivatives, are small (O(T-&)) every- 
where except in a narrow cylindrical region near the axis of rotation of the 
sphere. In  the limit of large Taylor number, it is hence sufficient, to O(T-*), to 
have the boundary conditions satisfied on the circular cap a t  z = 1, for finite w*. 

We shall omit some algebra and state the results: The characteristic equation 
fbr the free boundary is 

and the eigenfunction can be written, for z > 0, as 

$41)  = O(T-Q), (4.1) 

U(z,w*) (#(4 J1(ao*)b* 

- 2$'(1) T-texp (-2/,/2)sin(z"/,/2) a(J,(aw*))/aw*){l +O(T-*)). (4.2) 

For the rigid boundary the characteristic equation is 

#( 1) = $'( 1)/.~242Ti%, (4.3) 

and the eigenfunction can be written, for z > 0, as 

U(z,w*) = (#(z)  - #'( 1) exp ( - 5/42) cos (2/,/2 - &r)/a2Th) 

x J,(aw*)/w* + O(T-4). (4.4) 
Similar expressions are obtained when z < 0. 

We point out that, to describe the incipient motion for the case of free 
boundaries, we do not need a boundary layer; however, to compute the stresses 
a t  the free boundary, the second term in (4.2) must be retained. For a rigid 
boundary we must solve for #(z )  to O(T+) to compute the incipient motion and 
it is necessary to retain the second term in (4.3) for the boundary-layer motion 
as well as the stresses at  the boundary. 

We shall discuss a numerical solution of the characteristic equations (4.1) and 
(4.3) in $6.  

30 Fluid Mech. 23 
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5. Velocity field for the rigid boundary 
In  this section we shall discuss the streamline pattern for the rotating sphere 

at the onset of steady convection in the case of rigid boundaries. For this purpose, 
it  is convenient to write the dimensionless velocity components in the cylindrical 

a a co-ordinates 
u = - w -  U O + w T J V $ + w - l - ( w 2 U ) $ .  

az aw (5.1) 

Axis of rotation 

A0 Jo(aw*)=O J l ( a w * > = o  
0 I * aw T' 

1 

2 

Equator 
FIGURE 1. Schematic representation of the projections of the streamlines on a meridional 
plane for one-half of the toroidal cell closest to the axis of rotation. The fluid enters and 
leaves the boundary layer in regions O(T-2)  thick and the cell cores are O(T-*) wide. The 
cell widths are O ( T - i ) .  This cellular motion will decay as T-) with increasing o. 

From the results of Q Q  3 and 4, the asymptotic form of the streamfunctions, 
U and V ,  can be written as 

where 

U = { $ ( x )  - G(Z)/Tik} J,(cco*)/o* + O(T-i) ,  
!P*V = {$'(.z) - H(2) )  Jl(~0*)/(2a2)J~* + O(T*), 

(5.2) 

(5.3) 

(5.4) I G(Z) = $'( 1) exp ( - PlZ) cos (plz" - &)/a2, 
H ( z )  = #'(l)exp(-P"la)cos(~la;a), 

PI = 1/ J2, z" = (1  - 2 )  Tf,  W *  = T b .  
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For ( 1  - z)  = O( I), which represents the interior of the sphere, the expression 

(5.5) 

It now follows that, for large T, the interior motion consists of particle paths 
which are tightly wound spirals about the axis of rotation. There is a slow drift, 
of 0(27--)), of fluid normal to the axis, and it is this drift which induces the 
spiralling motion. 

Since the motion in the interior of the sphere consists of fluid particles moving 
in spirals, the particles at the solid boundary are slowed down by Ekman layers. 
The terms G(2) ,  H(2)  in (5.2) and (5.3) represent this effect. Where the boundary 
layer co-ordinate z“ = O ( l ) ,  (5.1) can be written with the aid of (5.2), (5.3) and 
(4.15) as 

(5.1) reduces with the aid of (5.2) and (5.3) to 

u = - T-i$’(z) J1(aw*) 0 + $’(z) J,(aw*) a-24 + #(z) aJ,(aw*) 5. 

U(E, o*) - $’(I) (exp (,&E) sin (/~,zz”) ~,(ao*) Q 

+ [ I -  exp ( -&z) cos (/7,2)] ~ , ( a w * )  4 
+T-&a[l -exp( -p12) ( ~ 0 s ~ ~ z “ + s i n ~ ~ z ” ) ] J , ( a w * ) ~ } / ~ 2 ~ .  (5.6) 

A schematic representation of the streamline pattern for the toroidal component 
of (5.1) for one-half of the cell nearest to the axis of rotation is given in figure 1 .  

6. Some numerical calculations 
In  this section we shall consider a variational procedure for calculating the 

asymptotic form of the characteristic equation P = P(a). From the results of 
$ 4 ,  (4.1) or (4.3) reduces in either case to 

$ ( I )  = O(T+). (6.1)  

We multiply (3.13) by $(z )  and integrate from O +  1, which yields, with the aid 
of (6.1),  a variational formula for P as 

To obtain an upper bound for the minimum value of $P, we can substitute 
a trial function for $(z)  in (6.2). We expand $(z) in a Fourier cosine series, 

which satisfies the boundary condition (6.1) to O(T-A). With the substitution of 
(6.3) into the variational formula (6.2), the best approximation to #(z)  is provided 
by the choice of A ,  which makes 8(a2P)/8A, = 0: 

30-2 
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From (6.4) we obtain the characteristic equation of infinite degree in a2P as 

5.5 

4.0 

3.5 

3.0 

log T 

FIGURE 2. The dependence of the critical Rayleigh number for the onset of convective 
instability on the Taylor number in a rotating fluid sphere. The curves labelled (1) and (2) 
are previous calculations from Bisshopp (1958) for the cases of a rigid and free bounding 
surface. Curve (3) is the calculation of the asymptotic limit of curves (1) and (2). 

By setting the corner element equal to zero, we obtain the characteristic 

(6.6) 
equation 

from which the minimum value Pdl) is calculated as 

a2P(o (T' - 6)/3n2 = a6 + in2, 

P,cl) = zn'."/(n2- 6) r 26.42, 

= id 1.03. 

Setting a 2 by 2 determinant equal to zero yields the results 

Pd2) 24.47, 

ad2)  g 1.07, 

and a 3 by 3 determinant yields the results 

Pc(3) 24.33, 

a,.,, g 1.09. 

(6.9) 

(6.10) 

(6.11) 

(6.12) 



Onset of convection in a rapidly rotating fluid sphere 469 

From the above calculations, it  is suggested that a larger determinant would 
yield another 1 yo accuracy, and it seems hardly worth while to carry them 
further. The result (6.11), valid to O(T-1%) for both boundary conditions, agrees 
well with the numerical calculations performed by Bisshopp (1958). This result, 
along with the previous result, is plotted on figure 2. 

7. Concluding remarks 
It is perhaps worth pointing out that the asymptotic analysis of the thermal 

instability in a sphere applies just as well for a rotating oblate spheroid with 
a uniform distribution of internal heat source. The basis of this observation is 
that the potentially unstable temperature gradient and gravity vectors in the 
small region around the axis of rotation are identical with those in a sphere. It 
is this temperature gradient in combination with the gravity force which deter- 
mines the asymptotic critical Rayleigh number a t  the limit of large Taylor 
number. 

A second point which must be mentioned is that the assumptions of the 
exchange of stabilities and axial symmetry made here are unjustifiable. It is 
reasonable to expect that for large Prandtl number only will the instability set in 
as steady convection rather than overstability, as is the case for the rotating 
plane layer (cf. Chandrasekhar 1961, oh. 3). As we have seen, asymptotic 
approximation provides a powerful method for dealing with axisymmetric, 
neutral modes of thermal instability in rapidly rotating systems. It is hoped that 
it will be possible also to consider aspects of the non-axisymmetric problem 
and/or overstable modes with such methods. 

Since the completion of this work, P. H. Roberts (1965) has communicated to 
us the results of his independent formulation of the problem. He computed 
values of P, and ac by direct numerical integration of equation (3.13), which he 
also derives. His value of P, turns out to be a puzzling 20 yo lower than ours. 
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